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3 Department of Physics, Nanjing Normal University, Nanjing 210097, PRC

Received: 4 November 2000 / Revised version: 2 August 2001
Communicated by A. Schäfer

Abstract. We investigate the spin structure of the nucleon in an extended Jaffe-Lipkin quark model. In
addition to the conventional 3q structure, different (3q)(QQ̄) admixtures in the nucleon wave function are
also taken into account. The contributions to the nucleon spin from various components of the nucleon
wave function are discussed. The effect due to the Melosh-Wigner rotation is also studied. It is shown
that the Jaffe-Lipkin term is only important when antiquarks are negatively polarized. We arrive at a new
“minimal” quark model, which is close to the naive quark model, in order to understand the proton spin
“puzzle”.

PACS. 12.39.-x Phenomenological quark models – 13.60.Hb Total and inclusive cross sections (including
deep-inelastic processes) – 13.88.+e Polarization in interactions and scattering – 14.20.Dh Protons and
neutrons

1 Introduction

It has been more than a decade since the discovery of the
Gourdin-Ellis-Jaffe sum rule (GEJ) [1] violation in the po-
larized deep inelastic scattering (DIS) experiment by the
European Muon Collaboration [2]. The physics commu-
nity was puzzled since the experimental data meant a sur-
prisingly small contribution to the proton spin from the
spins of the quarks, in contrast to the Gell-Mann-Zweig
quark model in which the spin of the proton is totally
provided by the spins of the three valence quarks. This
gave rise to the proton spin “crisis” or spin “puzzle”, and
triggered a vast number of theoretical and experimental
investigations on the spin structure of the nucleon. Among
them, there was an interesting contribution to understand
the spin of the nucleon within a “minimal” simple quark
model [3], where it was observed that the nucleon has only
a small amplitude to be a bare three-quark state |qqq〉,
while the largest term in the wave function is

∣∣qqqQQ̄
〉
, in

which QQ̄ denotes sea quark-antiquark pairs.
There was a prevailing impression that the proton

spin structure is in conflict with the quark model. How-
ever, there has been an attempt to understand the proton
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spin puzzle within the quark model by using the Melosh-
Wigner rotation effect [4,5], which comes from the rel-
ativistic effect of the quark intrinsic transversal motion
inside the proton. It was pointed out [4–6] that the quark
helicity (∆q) observed in polarized DIS is actually the
quark spin defined in the light-cone formalism, and it is
different from the quark spin (∆qQM ) as defined in the
quark model. Thus the small quark helicity sum observed
in polarized DIS is not necessarily in contradiction with
the quark model in which the proton spin is provided by
the valence quarks [5,7]. Recent progress [8–10] has also
been made on the Melosh-Wigner rotation effect in other
physical quantities related to the spin structure of the
nucleon, and the significance of the Melosh-Wigner rota-
tion connecting the spin states in the light-front dynam-
ics and the conventional instant-form dynamics has been
widely accepted. Thus it is necessary to check what can
be obtained for the spin structure of the nucleon within
the quark model, after we take into account the Melosh-
Wigner rotation. Certainly our present understanding of
the nucleon spin structure has been enriched from what
we knew before the discovery of the GEJ sum rule viola-
tion, and we now know that both the sea quarks and the
gluons play an important role in the spin structure of the
nucleon. The purpose of this paper is to extend the sim-
ple Jaffe-Lipkin quark model to a more general framework,
by including other necessary ingredients in the nucleon sea
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such as pseudoscalar mesons, whose addition is supported
by available theoretical and experimental studies.

The paper is organized as follows. In sect. 2, we
briefly review the Melosh-Wigner rotation effect in the
quark model, and show that the introduction of an up(u)-
down(d) quark flavor asymmetry of the Melosh-Wigner
rotation factors can reproduce the present experimental
data of the integrated spin structure functions for both
the proton and the neutron [11–13], within a simple SU(6)
quark model with only three valence quarks. In sect. 3,
we introduce the contribution from the higher Fock states
|BM〉 =

∣∣qqqQQ̄
〉

in which the quark and antiquark of
a quark-antiquark pair are rearranged non-perturbatively
with the three valence quarks into a pseudoscalar meson
and a baryon, and we write the configuration as a baryon-
meson (BM) fluctuation [14]. It is shown that the consid-
eration of the lowest p(uudDD̄) = n(udD)π+(uD̄) fluctu-
ation, which is supported by the observed Gottfried sum
rule violation [15,16], introduces an u-d flavor asymmet-
ric term in the quark contributions to the nucleon and
produces a reasonable u-d Melosh-Wigner rotation asym-
metry which is required to reproduce the data. In this
section, we point out that the Jaffe-Lipkin term of quark-
antiquark pairs (which are actually vector mesons in a
baryon-meson fluctuation picture) will only be necessary
when there is need for negatively polarized antiquarks.
Thus, we present a new “minimal” quark model exten-
sion of Jaffe-Lipkin model, with three valence quarks, sea
quark-antiquark pairs in terms of baryon-meson fluctua-
tions where the mesons are either pseudoscalar or vector
mesons, in order to understand the proton spin “puzzle”
within the quark model framework. Finally, we present
discussions and conclusions in sect. 4.

2 The naive quark model and the
Melosh-Winger rotation

The spin-dependent structure functions for the proton and
the neutron, when expressed in terms of the quark helicity
distributions ∆q(x), should read

gp
1(x) =

1
2

{
4
9

[∆u(x) + ∆ū(x)] +
1
9

[
∆d(x) + ∆d̄(x)

]

+
1
9

[∆s(x) + ∆s̄(x)]
}

, (1)

gn
1 (x) =

1
2

{
1
9

[∆u(x) + ∆ū(x)] +
4
9

[
∆d(x) + ∆d̄(x)

]

+
1
9

[∆s(x) + ∆s̄(x)]
}

, (2)

where the quantity ∆q(x) is defined by the axial current
matrix element

∆q = 〈p, ↑| qγ+γ5q |p, ↑〉 . (3)

By expressing the quark axial charge or the quark helicity
defined by ∆Q =

∫ 1

0
dx[∆q(x) + ∆q̄(x)], we obtain

Γ p =
∫ 1

0

dxgp
1(x) =

1
2

(
4
9
∆U +

1
9
∆D +

1
9
∆S

)
, (4)

Γn =
∫ 1

0

dxgn
1 (x) =

1
2

(
1
9
∆U +

4
9
∆D +

1
9
∆S

)
. (5)

Two linear combinations of the axial charges, ∆Q3 =
∆U − ∆D and ∆Q8 = ∆U + ∆D − 2∆S, are therefore
given by

∆Q3 = 6(Γ p −Γn) = ∆U −∆D = GA/GV = 1.261 , (6)

from neutron decay plus isospin symmetry, and by

∆Q8 = ∆U + ∆D − 2∆S = 0.675 , (7)

from strangeness-changing hyperon decays plus flavor
SU(3) symmetry. Prior to the EMC experiment, the fla-
vor singlet axial charge was evaluated by Gourdin and
Ellis-Jaffe [1], assuming ∆S = 0, to be

∆Q0 = Σ = ∆U + ∆D + ∆S = ∆Q8, (8)

which is only true in the naive quark model without a
gluonic contribution. Then one obtains, neglecting small
QCD corrections, the GEJ sum rule

Γ p =
1
12

∆Q3 +
1
36

∆Q8 +
1
9
∆Q0 = 0.198 , (9)

which is larger than the observed experimental result of
0.126 from the EMC experiment [2], but now revised to
be 0.136 [11–13].

The discovery of the GEJ sum rule violation came as
a big surprise to the physics community since the sum of
the quark helicities Σ inferred from eqs. (6) and (7) and
the observed Γ p, by allowing ∆S �= 0, gave the value

Σ = ∆U + ∆D + ∆S = 0.020 (10)

from the EMC data Γ p = 0.126 [2], and

Σ = ∆U + ∆D + ∆S ≈ 0.30 (11)

from the revised results Γ p = 0.136 and Γn = −0.03, as-
suming SU(3) symmetry [11–13]. This is in conflict with
the naive expectation that the spin of the proton is to-
tally provided by the spins of the three valence quarks
in the naive SU(6) quark model, if one interpreted the
quark helicity ∆Q as the quark spin contribution to the
proton spin. Many theoretical and experimental investi-
gations have been devoted to understand this proton spin
“puzzle” or spin “crisis” [17].

However, it has been pointed in refs. [4,5] that this
puzzle can be easily explained within the naive SU(6)
quark model if one properly considers the fact that the
observed quark helicity ∆Q is the quark spin defined in
the light-cone formalism (infinite momentum frame), and
it is different from the quark spin as defined in the rest
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frame of the nucleon (or in the quark model). In the light-
cone or quark-parton descriptions, ∆q(x) = q↑(x)−q↓(x),
where q↑(x) and q↓(x) are the probabilities of finding a
quark or antiquark with longitudinal momentum fraction
x and polarization parallel or anti-parallel to the proton
helicity in the infinite momentum frame. However, in the
nucleon rest frame one finds [4,6]

∆q(x) =
∫

[d2k⊥]Mq(x,k⊥)∆qQM (x,k⊥) , (12)

with

Mq(x,k⊥) =
(k+ + m)2 − k2

⊥
(k+ + m)2 + k2

⊥
, (13)

where Mq(x,k⊥) is the contribution from the relativistic
effect due to the quark transverse motion (or the Melosh-
Wigner rotation effect), qsz= 1

2
(x,k⊥) and qsz=− 1

2
(x,k⊥)

are the probabilities of finding a quark and antiquark
with rest mass m and transverse momentum k⊥ and
with spin parallel and anti-parallel to the rest proton
spin, ∆qQM (x,k⊥) = qsz= 1

2
(x,k⊥) − qsz=− 1

2
(x,k⊥), and

k+ = xM, where M2 =
∑

i
m2

i +k2
i⊥

xi
. The Melosh-Wigner

rotation factor Mq(x,k⊥) ranges from 0 to 1; thus ∆q
measured in polarized deep inelastic scattering cannot be
identified with ∆qQM , the spin carried by each quark fla-
vor in the proton rest frame or the quark spin in the quark
model. The connection between the rest frame and infinite
momentum frame (light-cone) wave functions and kine-
matics can be found in ref. [18].

We now check whether it is possible to explain the ob-
served data for Γ p and Γn within the SU(6) naive quark
model by taking into account the Melosh-Wigner rota-
tion effect. Though we do not expect this to be the real
situation, it is interesting since there existed a general im-
pression that it is impossible to explain the proton spin
“puzzle” within the SU(6) naive quark model. Also an
early attempt [4] for such purpose failed, by using the
early EMC data Γ p = 0.126 and Γn obtained from the
Bjorken sum rule Γ p −Γn = 1

6GA/GV . We start from the
conventional SU(6) naive quark model wave functions for
the proton and the neutron

|p↑〉 =
1√
18

(
2|u↑u↑d↓〉 − |u↑u↓d↑〉 − |u↓u↑d↑〉)

+ (cyclic permutation) ; (14)

|n↑〉 =
1√
18

(
2|d↑d↑u↓〉 − |d↑d↓u↑〉 − |d↓d↑u↑〉)

+ (cyclic permutation) . (15)

One finds that the quark spin contributions ∆uQM = 4
3 ,

∆dQM = − 1
3 , and ∆sQM = 0 for the proton, and the

exchange of u ↔ d in the above quark spin contributions
gives those for the neutron. Then we get the integrated
spin structure functions for the proton and the neutron as

Γ p =
1
2

(
4
9
〈Mu〉∆uQM +

1
9
〈Md〉∆dQM +

1
9
〈Ms〉∆sQM

)
;

(16)

Γn =
1
2

(
1
9
〈Mu〉∆uQM +

4
9
〈Md〉∆dQM +

1
9
〈Ms〉∆sQM

)
,

(17)
where 〈Mq〉 is the averaged value of the Melosh-Wigner
rotation factor for the quark q. From eqs. (16) and (17)
we obtain

〈Mu〉∆uQM =
24Γ p − 6Γn − 〈Ms〉∆sQM

5
; (18)

〈Md〉∆dQM =
24Γn − 6Γ p − 〈Ms〉∆sQM

5
, (19)

from which we get the values

〈Mu〉∆uQM = 0.689 ; (20)

〈Md〉∆dQM = −0.307 , (21)

with the inputs Γ p = 0.136, Γn = −0.03 [11–13], and
∆sQM = 0. Thus we get, for ∆uQM = 4

3 and ∆dQM =
− 1

3 , that

〈Mu〉 = 0.517, 〈Md〉 = 0.921,

and
rd/u = 〈Md〉/〈Mu〉 = 1.78, (22)

which means that we need a flavor asymmetry between the
u and d quarks for the Melosh-Wigner rotation factors to
reproduce the observed data Γ p and Γn within the SU(6)
naive quark model. The sum of quark helicities in this
situation is

Σ =〈Mu〉∆uQM +〈Md〉∆dQM +〈Ms〉∆sQM ≈0.38 , (23)

which is small and far from 1, which is the total quark
spin contribution ∆uQM +∆dQM +∆sQM to the nucleon
spin. We need to point out here that there is no mistake in
calling the quark helicity ∆q = 〈Mu〉∆uQM the quark spin
contribution as commonly accepted in the literature, if one
properly understands it from a relativistic viewpoint. But
in this case there should be also non-zero contribution to
the relativistic orbital angular momentum even for the S-
wave quarks in the naive SU(6) quark model. Detailed
illustrations concerning this point can be found in ref. [9]
where the role played by the Melosh-Wigner rotation on
the quark orbital angular momentum is studied.

We know that a symmetry between the valence u(x)
and d(x) quark distributions would mean Fn

2 (x)/F p
2 (x) ≥

2
3 for the unpolarized structure functions F2(x) in the
whole x region x = 0 → 1, and this has been ruled out
by the experimental observation that Fn

2 (x)/F p
2 (x) < 0.5

at x → 1. This indicates an asymmetry between the
u(x) and d(x) valence quark distributions, and such an
asymmetry, which can be reproduced in an SU(6) quark-
spectator-diquark model [19,20], also implies an asymme-
try between the Melosh-Wigner rotation factors for 〈Mu〉
and 〈Md〉 [7]. It is interesting to notice that the asym-
metry ratio rd/u = 〈Md〉/〈Mu〉 larger than 1 is in the
right direction as predicted in the quark-spectator-diquark
model [7], though the magnitude is not so big as that given
in eq. (22). This may imply that an additional source for a
bigger u-d flavor asymmetry is needed for a more realistic
description of the nucleon.
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3 The intrinsic nucleon sea from the
baryon-meson fluctuations

Though the proton spin “puzzle” raised doubt about the
quark model at first, there has been a consistent at-
tempt to understand the problem within the quark model
framework on extended quark models [3,21,22], and also
on the quark model in the light-cone formalism [4–8].
For example, Jaffe and Lipkin [3] found that both the
EMC data and the β-decay data can be fitted using a
“reasonable modification” of the standard quark model
in which the only additional degrees of freedom are a
single quark-antiquark pair in the lowest states of spin
and orbital motion allowed by conservation laws. Keppler
et al. [21] pointed out that the 5q component should be
dominated by pseudoscalar S-wave mesons. Qing, Chen,
and Wang [22] gave a numerical calculation of the coef-
ficients of the total wave function in the non-relativistic
quark potential model by including the Melosh-Wigner
rotation effect [4], although in a different manner, and
showed that the proton wave function is dominated by
the bare 3q state.

In this section, we will perform a more detailed anal-
ysis of the spin structure in an extended quark model by
taking into account the higher Fock states in the wave
function of the proton, and check how these higher Fock
states may influence the analysis in sect. 2, where we con-
sidered the effect of the Melosh-Wigner rotation with the
three valence quark component only. In the higher Fock
states, the quark and antiquark of a quark-antiquark pair
are rearranged non-perturbatively with the three valence
quarks into a meson and a baryon and we write the config-
uration as a baryon-meson fluctuation. In the “minimal”
quark model of Jaffe-Lipkin [3], the quark-antiquark pairs
are actually vector mesons in a baryon-meson fluctuation
picture. The higher Fock state in the “minimal” quark
model, which is referred to as Jaffe-Lipkin term, can be
written as

|[JL]↑〉 = cos θ|[bε]↑〉 + sin θ|[bD]↑〉, (24)

where b denotes the three-quark qqq component for a bare
nucleon. The extra qqqQQ̄ component |[bε]↑〉 with the 0++

QQ̄ denoted by ε can be written as

|ε〉 =

√
1
3
|Y ⇑X⇓〉 +

√
1
3
|Y ⇓X⇑〉 −

√
1
3
|Y 0X0〉, (25)

and the extra qqqQQ̄ component |[bD]↑〉 with the 1++ QQ̄
denoted by D can be written as

|[bD]↑〉 =

√
2
3
|b↓D⇑〉 −

√
1
3
|b↑D0〉, (26)

with

|D⇑〉 =

√
1
2
|Y ⇑X0〉 −

√
1
2
|Y 0X⇑〉; (27)

|D0〉 =

√
1
2
|Y ⇑X⇓〉 −

√
1
2
|Y ⇓X⇑〉, (28)

where D⇑, D0, and D⇓ denote the J3 states of the QQ̄
pair; Y ⇑, Y 0, and Y ⇓ denote the L3 states of the QQ̄
spin; X⇑, X0, and X⇓ denote the S3 states of the QQ̄
spin; and ⇑ denotes a J3 = 1 spin contribution and ↑
denotes a J3 = 1/2 spin contribution. With the above
higher Fock states included, Jaffe and Lipkin found that
the proton state has only a small amplitude to be a bare
three-quark baryon state, in order to reproduce the large
negative sea spin found in their analysis on the hyperon
beta decay, baryon magnetic moments and the EMC result
on the fraction of the spin of the nucleon carried by the
spins of the quarks [3].

In the Jaffe-Lipkin term, only P -wave vector qq̄ pairs
have been taken into account. However, if we consider
the qqqQQ̄ component as a baryon-meson fluctuation of
the nucleon, then the dominant fluctuations should be
the ones in which the baryon-meson has the smallest off-
shell energy [14]. Therefore, energy considerations require
that the qqqQQ̄ component should be dominated by pseu-
doscalar S-wave mesons, like the pion [21]. In order to de-
scribe a nucleon state more realistically, we include these
new higher Fock states in addition to the Jaffe-Lipkin
states, and the nucleon state should be in principle ex-
tended to

|B↑〉 = cos α cos β|b↑〉 + sin α cos β|[BM ]↑〉 + sin β|[JL]↑〉,
(29)

where α and β are the mixing angles between the bare
baryon state and the baryon-meson states |[BM ]↑〉 and
|[JL]↑〉, and the baryon-meson BM state can be written
as

|[BM ]↑〉 =

√
2
3
|b↓MY ⇑〉 −

√
1
3
|b↑MY 0〉, (30)

where M denotes the spin contribution from the pseu-
doscalar meson (with spin zero but parity −1), and Y de-
notes orbital angular momentum (with L = 1) due to the
relative motion between the baryon and the meson. We
can also extend the BM term by including the b∗ = qqq
state with spin S = 3/2, if higher order baryon-meson
fluctuations need to be considered, and in this case we
write

|[BM ]↑〉 = A(bM)|[bM ]↑〉 + A(b∗M)|[b∗M ]↑〉, (31)

where

|[bM ]↑〉 =

√
2
3
|b↓MY ⇑〉 −

√
1
3
|b↑MY 0〉, (32)

as in eq. (30), and

|[b∗M ]↑〉 =

√
1
2
|b∗⇑↑MY ⇓〉 −

√
1
3
|b∗↑MY 0〉

+

√
1
6
|b∗↓MY ⇑〉. (33)

The anti-quarks are unpolarized since they exit only in
the pseudoscalar meson of the BM state.

Using the wave function (29), we now calculate the
contributions Σv, Σs, and Λs, of the valence quark spins,
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Table 1. The mixing angles.

Σs(II) = −0.69 ± 0.27 Σs(III) = −0.56 ± 0.22

sin α sin β sin θ sin α sin β sin θ

± 0.200 1.080−0.281
+0.258 − 0.408−0.112

+0.058 ± 0.200 0.947−0.086
+0.117 − 0.452+0.144

−0.105

± 0.400 1.065−0.243
+0.198 − 0.429−0.019

+0.008 ± 0.400 0.956−0.220
+0.179 − 0.436−0.023

+0.010

± 0.600 1.052−0.180
+0.166 − 0.452+0.086

−0.042 ± 0.600 0.966−0.146
+0.143 − 0.419+0.097

−0.050

± 0.800 1.041−0.125
+0.159 − 0.472+0.155

−0.098 ± 0.800 0.975−0.086
+0.117 − 0.405+0.144

−0.105

the spin of the sea, and the orbital angular momentum of
the sea, to the spin of the proton, and we obtain

Σv = cos2 α cos2 β − 1
3

sin2 α cos2 β + sin2 β cos2 θ

−1
3

sin2 β sin2 θ; (34)

Σs =
8
3

√
1
2

sin2 β sin θ cos θ +
2
3

sin2 β sin2 θ; (35)

Λs = −8
3

√
1
2

sin2 β sin θ cos θ +
2
3

sin2 β sin2 θ

+
4
3

sin2 α cos2 β, (36)

with
Σv + Σs + Λs = 1. (37)

We can say alternatively that Σv comes from the spin
sums of all b = qqq terms, Σs from the spin sums of all
QQ̄ terms (X terms in the Jaffe-Lipkin term and M terms
in the BM term eq. (30)), and Λs from the orbital angular
momentum of all Y terms in the nucleon state |B↑〉.

It can be easily seen that the sea spin Σs comes en-
tirely from the Jaffe-Lipkin term, since the spin contri-
bution from the M terms is zero. It is also interesting
that Σs cannot be negative if there is no interference
between the two components |bε〉 and |bD〉 in the Jaffe-
Lipkin term eq. (24). If we follow ref. [3] and adopt the
two models for the sea spin Σs, then we find that we must
arrive at the conclusion of Jaffe-Lipkin term dominance.
In the first model (called II in ref. [3]), the sea is taken
as SU(3)flavor symmetric, and Σs(II) = −0.69 ± 0.27. In
the second model (called III in ref. [3]), the sea is taken
as SU(2)flavor symmetric, and Σs(III) = −0.56 ± 0.22.
On the other hand, the data on hyperon and nucleon β-
decays requires Σv to be approximately 3

4 . Of course, it
is impossible for us to completely determinate α, β and
θ using the values of Σv and Σs mentioned above. But,
taking (34) and (35) as constraint conditions, we can give
a range of values of these mixing angles. Selected values
of mixing angles are shown in table 1. Notice that we
get values of sinβ larger than 1, as was also the situa-
tion in the Jaffe-Lipkin analysis [3], but physical values
| sin β| < 1 are allowed within error bars. The results in
table 1 show that a physically reasonable cos β can only

have a very small value with the above Σv and Σs, and
this requires the Jaffe-Lipkin term dominance. The sea
in the baryon-meson state (30) only provides the orbital
angular momentum to the nucleon, and the Jaffe-Lipkin
term (24) provides the negative-polarized sea spin. Thus,
the necessity of the Jaffe-Lipkin term depends only on the
sea quark polarization of the nucleon.

From a strict sense, the sea spin Σs has not been mea-
sured directly, and also the Melosh-Wigner rotation fac-
tors should be introduced into the so-called spin term Σv

obtained from hyperon and nucleon β-decays, and the fla-
vor asymmetry and SU(3) symmetry breaking should be
important. Therefore, the above analysis needs to be up-
dated. It would be more practical to decompose the spin
by the contributions from the quarks Σq = Σv + 1

2Σs, the
antiquarks Σq̄ = 1

2Σs, and the orbital angular momentum
Λs, which still meet the condition

Σq + Σq̄ + Λs = 1. (38)

The antiquark helicity distributions extracted from semi-
inclusive deep inelastic scattering experiments are consis-
tent with zero [23], in agreement with the small antiquark
polarization predicted in both the baryon-meson fluctua-
tion model [14] and a chiral quark model [24]. There is still
no direct evidence for a large negative antiquark polariza-
tion in experiments. We also point out here that there
should be a quark-antiquark asymmetry for the spin of
the sea when flavor decomposition is necessary [14].

Since new measurements on the polarized structure
functions for both the proton and the neutron have be-
come available, we will use the measured Γ p and Γn as
inputs to study the effects due to the Melosh-Wigner rota-
tion, by including also the effects due to Jaffe-Lipkin and
BM higher Fock state terms in the nucleon wave func-
tion. Another aspect that we need to take into account
is that the u and d flavor asymmetries should exist in
both the valence and sea contents of the nucleon. The
observation of the Gottfried sum rule violation in several
processes [15,16] implies that there is an important contri-
bution coming from the lowest baryon-meson fluctuation
p(uudDD̄) = n(udD)π+(uD̄) of the proton [14,25]. This
puts a constraint on the value of α for the BM mixing
term. If one assumes an isospin symmetry between the
proton and neutron [26], then the Gottfried sum rule vi-
olation implies an asymmetry between the u and d sea
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distributions inside the proton∫ 1

0

dx
[
d̄(x) − ū(x)

]
= 0.148 ± 0.039. (39)

If we consider only the p(uudDD̄) = n(udD)π+(uD̄) com-
ponent inside the BM term and neglect flavor asymmetry
in the Jaffe-Lipkin term, then we get the constraint

sin2 α cos2 β = 0.148. (40)

The u and d quark spins in the proton wave function
should be

∆uQM = cos2 α cos2 β∆u0 − 1
3

sin2 α cos2 β∆d0

+ sin2 β∆uJL; (41)

∆dQM = cos2 α cos2 β∆d0 − 1
3

sin2 α cos2 β∆u0

+ sin2 β∆dJL, (42)

where ∆u0 = 4/3 and ∆d0 = −1/3 are the u and d quark
spins for the bare qqq proton, and ∆uJL and ∆dJL are
the u and d quark spins for the Jaffe-Lipkin term eq. (24)
from b, ε, and D

∆qJL =
(

1 − 4
3

sin2 θ

)
∆q0 +

1
4
Σs (43)

for q = u, d in case of only charge neutral QQ̄’s with u
and d flavors. Substituting the above ∆uQM and ∆dQM

into eqs. (20) and (21), we get

〈Mu〉 = 0.598 , 〈Md〉 = 0.878 ,

and
rd/u = 〈Md〉/〈Mu〉 = 1.47 , (44)

for β = 0 without the Jaffe-Lipkin term. We find that
the u and d flavor asymmetry rd/u is reduced com-
pared to eq. (22) and this shows that the p(uudDD̄) =
n(udD)π+(uD̄) fluctuation produces a more reasonable
d/u Melosh-Wigner rotation asymmetry than in the naive
picture with the bare nucleon state of only three valence
quarks [7]. This β = 0 example shows that we can have a
scenario of zero antiquark polarization while explaining all
the data. Therefore the Melosh-Wigner rotation changes
the previous conclusion of Jaffe-Lipkin dominance, allow-
ing for small values of β.

In fact, we should also include other baryon-meson
fluctuations in a more realistic picture of intrinsic sea
quarks [14], such as p(uudUŪ) = ∆++(uuU)π−(dŪ) for
the intrinsic UŪ quark-antiquark pairs and p(uudSS̄) =
Λ(udS)K+(uS̄) for the intrinsic strange quark-antiquark
pairs. In this case we can write the baryon-meson term as

sin α cos β
∣∣[BM ]↑

〉
= A(nπ+)

∣∣nπ+
〉

+ A(ΛK+)
∣∣ΛK+

〉
+A(∆++π−)

∣∣∆++π−〉
, (45)

where we take the baryon-meson configuration probabili-
ties P (p = BM) = [A(BM)]2 as

P (p = nπ+) ∼ 15% ; P (p = ΛK+) ∼ 3% ;
P (p = ∆++π−) ∼ 1% , (46)

as estimated from a reasonable physical picture [14]. With
the above baryon-meson fluctuations considered, we find,

〈Mu〉 = 0.624 , 〈Md〉 = 0.912 ,

and
rd/u = 〈Md〉/〈Mu〉 = 1.46 , (47)

which are close to eq. (44), the case with only p = nπ+

fluctuation. Thus our above analysis supports a reason-
able picture of a dominant valence three-quark component
with a certain amount of the energetically favored baryon-
meson fluctuations [14], as a “minimal” quark model for
the spin relevant observations in DIS processes and also
for several phenomenological anomalies related to the fla-
vor content of nucleons [14]. Of course, we can also include
the necessary other higher 5q Fock states approximated in
terms of the BM state and the Jaffe-Lipkin state.

The gluon distribution of a hadron is usually assumed
to be generated from the QCD evolution. However, it has
been pointed in ref. [27] that there exist intrinsic gluons in
the bound-state wave function. Therefore, we could also
consider the possibility of including a (qqqg) Fock state in
our description. Unfortunately, the gluon is always a rela-
tivistic particle, and it is not easy to incorporate it in the
present framework. We must use a relativistic approach
from the start, such as the one given in ref. [28].

4 Summary and discussion

We investigated the spin structure of the nucleon in a
simple quark model. First, we studied the effect due to
the Melosh-Wigner rotation. We found that an introduc-
tion of an up-down quark flavor asymmetry in the Melosh-
Wigner rotation factors can reproduce the present experi-
mental data of the integrated spin structure functions for
both the proton and the neutron within a simple SU(6)
quark model with only three valence quarks. And then,
we discussed the contributions to the nucleon spin from
various components of the nucleon wave function. The cal-
culated results indicate that the baryon-meson state of
Jaffe-Lipkin with vector meson is only necessary when the
sea quarks (or more definitely, the antiquarks) are nega-
tively polarized, regardless of the existence of states which
include the pseudoscalar mesons.

The Melosh-Wigner rotation is one of the most im-
portant ingredients of the light-cone formalism. Its ef-
fect is of fundamental importance in the spin content
of hadrons, and it is mainly due to the transverse mo-
mentum of quarks in the nucleon. Actually, it reflects
some relativistic effects of a quark system. On the other
hand, the simple quark model discussed here includes the
baryon-meson fluctuations in the nucleon wave function,
which is a non-perturbative effect. The present investiga-
tion shows that relativistic and non-perturbative effects
are very important in order to understand the spin struc-
ture of the nucleon. In the simple quark model, the bare
three-quark component and the baryon-meson state with
a pesudoscalar meson, are still dominant concerning the
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proton spin problem in polarized structure functions, after
we take into account the Melosh-Wigner rotation effect.
Thus, we arrive at a new “minimal” quark model, which is
close to the naive quark model, to understand the proton
spin “puzzle” or “crisis”.
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